Mammals regulate homeostasis through numerous biochemical pathways1. When homeostasis cannot be maintained, diseases such as diabetes can develop. Diabetes is the leading cause of kidney disease in the western world and can be presented as either Type 1 or Type 2 Diabetes Mellitus. \textit{Drosophila melanogaster} is an animal that struggles to achieve homeostatic nutrient levels during larval development2. Previous research has shown that a key hormonal pathway responsible for regulating nutrient levels is insulin signaling4. Research has also shown that both mammals and \textit{D. melanogaster} are able to regulate nutrient levels not only during periods of starvation, but also during periods of excess feeding5. We hypothesize that matrix-metalloproteinase (\textit{MMP2}) is the gene responsible for inhibiting insulin-signaling in the fat body of \textit{D. melanogaster}. To test this hypothesis, we compared the expression of the \textit{MMP2} gene in \textit{D. melanogaster} larvae in starved and fed groups. Fat body tissue samples were harvested from each group of animals. mRNA was isolated and converted to cDNA. RT-PCR was used to analyze the expression of the \textit{MMP2} gene. Quantitative PCR (qPCR) was then used to quantify the expression of \textit{MMP2}. This work will allow us to determine the impact of starvation on insulin-signaling during larval development, and the role that \textit{MMP2} plays in this process. The data will serve as a reference for understanding the genetic pathways that may lead to diabetes in humans.